
REIZRENCE MANUAL

Q. E. D.
TlME-SHARINGEDITOR

D. C. Angluin

L. P. Deutsch

Document No. R-15

Revised March 26, 1968

Contract SD-187

Office of Secretary of Defense

Advanced Research Projects Agency

Washington, D. C. 20325

.

.

(., 1;
TABLE OF CONTENTS

-- c. _\ A!

1.0

1’. 0

3-O
4.0

5.0

G.0

7.0

8.0

9.0

Introduction l-l

1.1 A Summary Description 1-l

1.2 Command Mode, Formats 1-l

l.3 Notation :\nd Conventions I-?

Addressing Text 2-1

".l Legal .Addresses 2-l

,'.2 Type Address Commands ?-3

?.3 Ex,amples for Section 2.0 2-3

Printing Text 3-l

Swing Text on Files 4-l

Destroying, Creating and Changing Lines 5-l

5.1 Deleting Lines 5-l
I- ,) . 7' Adding Lines 5-l

5.3 Changing P:lrts of Lines 5 -3

5.4 Control Characters for Text Input 5 -4

Substitute 6-l

String Buffers 7-l.

7.1 Loading, Deleting, and Printing Buffers 7-l

7.2 The Uses of String Buffers 7-3

Mode and Tab-Setting Commands 8-l

8.1 Quick/Verbose Mode 8-l

a.2 Ignore Characters Mode a.4
a.3 T:lb-Setting a-2
Returning from QED and Panic Messages 9-S

9.1 The Normal Return 9-l

9.2 Rubout 9-l

9.3 Panic Messages g-2

APPENDIX A: Index of Control Characters

APPENDIX B: Index of Commands

C‘ ,

.

l-l

(1 \I .r’

(. _,’

1.0 Introduction

1.1 A Summary Description

QED is a rather powerful program for editing symbolic text

which runs under the 930 time-sharing system. Its input and

output are symbolic files which can also be handled by the

'executive COPY command. It has extensive facilities for
inserting, deleting and changing lines of text, a line edit

feature, a powerful symbolic search feature, automatic tabs

which may be set by the user, and thirty-six buffers. Text
can be read from any file and written onto any file. A replace

command permits all occurrences'of a specified string of characters

to be replaced with another string.

1.2 Command Mode, Formats

To enter QED from the executive type QED. (underlined

portions are typed by the user.) QED will-&e a * and the user

may type any of the commands described in this manual. When

the operation of a command inated and QED is ready for

another command, it again types *; at this point QED is waiting

for commands and said to be in "command mode."
4

The formats the various commandsare of three basic types:

' 1. A single (non-alphanumeric) character (possibly preceded
by line address), for example: / and t, which

requires no confirming dot, but rather begins its
specified function as soon as the character is typed.

2. A command word (possibly preceded by line address),

for example: TABS and MODIFY, which require a confirming

dot before the specified function is begun. In typing

the command word, the user only types E initial
letter, then QJD recognizes the command and types the

xest of it. The user may then type a dot (.) to

confirm the command, or any other character, in which

case the command w-ill be aborted.

/ l-2

3. Mavericks, namely: READFROM, WRITE ON, SUBSTITUTE and
the buffer commands (LOAD, GET, JAM, BUFFER and KILL)

each of which is,specified by typing its initial

letter (QED types the rest) but otherwise has a unique

format (for fuller explanation see individual descrip-

tions).
For a list of all commands recognized in command mode (and the

locations of their descriptions) see Appendix B.

1.3 Notation and Conventions

A character with a following superscript C is a control

character and is typed by pressing the control key together with

the key for the basic character, for example, DC is control D

and is typed by holding down the control key and pressing the key

for D. Control characters do not have any printing characters

normally associated with them; to emphasize that nothing is

printed when they are typed, in the examples they are enclosed in

parentheses (which, apart from the function of emphasizing this
fact, should be ignored). In certain contexts, QED will print

some character when a control character is typed (e.g.,

for BC, t for AC, \ for WC). Thfs is noted in the individual

descriptions of the control characters, section 5.4. Also,

when a control character is part of the text being input from

output to the teletype, QED will represent Cc- as E (where 41

is some printing character), for example, tC will be typed as be?.
';' is used throughout this manual to indicate a single

(arbitrary) character. '&', 'Et and '2' are described in under

text addressing, section 2.1. Apart from these special symbols,

(in the examples and format-specifications) lower case letters,
parentheses, and underlining are used for comments, explanation,

and variable structures (always specified more fully in their

descriptions); and all other characters are literally typed by
QED or the user in specifying or executing the operation concerned.

9 \

/’ ‘, 3

2-1

2.0 Addrelssing Text

The text being edited is held in a single buffer, called

the main text buffer. It consists of a series of lines delimited
by carriage returns (CR's). The line is the only addressable
unit of text.

2.1 Legal Addresses

Lines may be addressed in the following ways:

1. By decimal numbers. The first line is numbered 1.

2. By. (called 'dot'), which refers to the current
line. The value of . is changed by many of the

editor's commands, as noted below.

3. By $, which always refers to the last line in the main
text buffer.

4. By labels. The structure :text: typed in command mode

causes a search for the indicated text at the beginning
of a line and followed by a character which is not a

letter or a digit. When typing in the text, A", WC,

Qc and Vc have their usual functi:ons (see section 5.4).

The text may contain any characters, may be a maximum

of 30 characters long, and is terminated by a colon (:).
The search begins with the line after the current line,

and cycles to the beginning of the buffer if it runs

off the end. Buffer 0 is loaded with the text searched
for. If the search succeeds, . addresses the line

where the label was found, and the value of :text: is

also this line. (Note that QlCD does not type any response

specifically to indicate that a search succeeded.)

If there is no line with the specified label in the

main text buffer, QED types 1 and restarts command input.

(In this case . fs not changed.)
The search may be begun at line A, where & is anJT.

legal address), instead of at .+l, by typing A_:text:

For example, .:ABC: begins the search at the current

line.

: I
2-2

'5. By arbitrary text. The structure [text] causes a

search for the specified text anywhere in the main

text buffer. The text may contain any characters

(and arbitrarily many of them) and is terminated by].
The search proceeds in the same way as the label
,search (4), and has the same effect when it succeeds

or fails. $text] starts the search of line A_, as

in label search.

6. By a legal address followed by +, - or space, followed
by another legal address. This construction has the
obvious meaning with the following qualifications:

a) Space is treated as +

b) A+B A B or A-B where A, is any legal address and - "2 - 2 --
g is a search is equivalent to AB, i.e., the search

for g is begun at A, and if it is successful, . and
A+B (or A B or A-B) address the line where the -- -- --
search succeeded.

c) After a search has been given in an address, . and $

may not be added to or subtracted from the address

being constructed. E.g., :text:+$, [text]-., and

:text:+Y-. are not legal addresses.

d) There can only be one occurrence of . or $ in a

given address. E.g., $-., .+., $+$-15 are not

legal addresses.

Throughout the remainder of this manual, the symbols A, and

g will represent any legal line addresses. Also, the symbol2

will indicate that a single line address, A_, may be given; or
a pair of line addresses separated by a comma (thus: &,B),

where the second address is at least as great as the first. In
this latter case, the interval is inclusive, i.e., A,B specifies

lines A, through B. (&,g where g is less than A, is treated as

an illegal parameter.) Or, one may type@, which addresses

all the lines' in the main text buffer. (And is thus equivalent

to L$.)

2-3

Generally, if no line addresses are typed before a command,

the interval is taken to be just the current line. For example:

*DELETE. is equivalent to *.DELETE. and */ is equivalent to
*./ . Exceptions to this are:

*APPEND. which is equivalent to *$APPEND.
*READ FRO;, which is equivalent to *$READ FROM
WITE ON, which is equivalent to *l,$WRlTE ON

If an address being typed in is deemed to be illegal, QED types
? and restarts command input. When a command is given, negative

line addresses are converted to 1, and an address greater than

that of the last line is treated as an illegal parameter, i.e.,
QED types f and restarts command input.

(Note: exsmples for text-addressing and type address

commands are in section 2.3.)

2.2 Type Address Commands

To facilitate text addressing, there are two commands which

convert between absolute line numbers and symbolic addresses.

A= (where A is any legal address) causes QED to type
the ling number of the line addressed by A,.

causes QED to type the "symbolic address" of the
line addressed by A,. (That is, the label of the
last line preceding A, which has a label, followed
by a decimal number indicating its displacement
from A. (The label part of the address is enclosed
in coi0ns)). For this cammsnd, any line which
begins with something other than a carriage-return
or a blank has a label, and the label typed out will
terminate with the first character after the initial
one which is not a letter or a digit. For example,
the label typed out for the line *ABW will be
:*AB:, and that for **ABW will be :*:

2.3 Examples for Section 2.0

It is assumed that the reader is familiar with the command

/ which types out the line or lines addressed.

2-4

SECOND
THIRD

FOURTH!!Ll.BE _

$7
FIRST LINE
*.zs 1
*.wFlRS'f
*$=L5
4
##FIFTH
*:SEcoND:=2
*.32
*:FOURTH:/
FOURTH!!LJ!NE
*:FOUR:?
*:FOURTH!:/
FOURTH! !LI$?E
*:FOURTH! !:?
*:FOURTH!:c:FOUFVI'H:
*CB3=5
*[H!!L]=b
*[ST]=1
*.eFlRST:
*ccFTlc:#:
*[mE]=1
*.=1
*[INE]=4
*II INE]=l
*.CmE]=1
*2[lm]=4

gg;;
*:FlRST:[lYlE]=4
*lbRST][ZRD][INE]~
*:FIRST::~COM):[IRDlfFI]~~~
*.=fj
*.1/
?
*1/
FIRSTLINE
*.+2/

THIRD
*.4-!SExoND:1
*.+2+
*. 2cr#:
*$-2~3
+

3.0 Printing Text

As text is kept))out of sight" in the main text buffer, the

user must explicitly direct Q&D to type out a line or lines

for his inspection.

There are four basic print command8 (in each, the value of
. is changed to the last line typed out):

z/ types out the lines(s) addressed by the
interval 2.

line-feed types out the next line (i.e., .+1)*

t types out the previous line (i.e., .-1).

g?NNT.

Examples:

*1, W
FIRSTLINE
SECOND

THIRD
FOURTH! !LlXE
##FIFTH
*t
FOURTH!!Lll!E
*t

THIRD
a-
FOURTH:!LINE

bF=

?
w

allows formatted printing of the line(s)
addressed by I; on the next line, QED types
DOUBLS? and expect8 the user to type Y or N
(which will be completed as YES or NO, respec-
tively) in response, to indicate whether he
desires double-spacing of the text. QED then
types the lines in pages of 54 (single-spaced)
or 27 (double-spaced) lines; before each page,
QED types a number of line-feeds, a short dashed
line, and an equal number of line-feeds. Also,
the last page is filled out to the size of the
others and marked at the bottom with a dashed
line.

FIRSTLlJNE
*t?
*2,:FOuRTH:pRIVl!.
DOUBLE? YES

-s-m-

SECOND

THIRD

FOURTH!!LINE

..---e

*

3-2

c.:,
4-1

4.0 Saving Text On Files

c- ’ : -

The following two commands enable the user to move text

between QED's main text buffer and symbolic files. They accept

file names in the format required by the executive.

&READ FRCM (file name). QED reads all the text from the
specified file (which should be
type 3, symbolic) and appends it
after line A.

*READFRCMisthe same as *$READ FRail.

After QED has finished reading the
text, it types out the number of
"words" read, (One t(wordf' is approxi-
mately 3 characters.) and returns
to command mode.

The main text buffer is not cleared
before the READ.

JjIRITE ON (file name). QED replaces the contents of the
specified file with the lines in
the interval I.

WRITE ON is the ssme as
*l,$WRITE ON

After QED has finished writing the
text, it prints out the number of
"wordsIt written and returns to
command mode.

The main text buffer is unaffected
by the WRITE.

Examples:

*15,17/
A BCD
12345678
EFGH
"15,l'FJRITE ON /TEST/.

2$wEs l

*RiAD FROM /TEST/.

9 WORDS.
jc$=u.8
*c$-fw
A BCD
12345678
EFGH
-x

(the lines read were appended, and
the main text buffer was not cleared
first.)

- I

5-l

2.0 Destroying, Creating and Changing Lines

c ! -2’

C” /

The following sections describe the heart of QFD: the

commands by which the user changes the text held in the main

text buffer:

5.1 Deleting Lines

FELETE. causes the line(s) addressed to be
deleted from the main text buffer;
. is set to the line before the
first one deleted.

Example:

*194/
FIRSTLINE
SECOND

THIRD
LINE FOUR
*=115
*2,3DELETE.
*.=1
*$=113
*1,2/
FIRST LINE
LINE FOUR
*

print the first four lines

there are 115 lines in the main text buffer.
delete the second and third lines.

is the line before the first one deleted (#2).
there are 2 fewer lines in the main text buffer.

the old second and third lines have been deleted. ~

5.2 Adding Lines

After each of the following three commands -- APPEND, INSERT,
and CHARGE -- QED expects the user to type in a series of lines
(each terminated by a carriage-return), the whole series followed

by a DC to indicate the end of the series. Q,ED then takes the

lines so collected and puts them into the main text buffer in

the position specified by the aommand (see individual descriptions.)
(If the user does not follow the last line with a carriage-return

before he types the DC, QED will insert the necessary carriage-

return.) In addition to DC, all of the control characters described

in section 5.4 are recognized; the 13ne being edited is taken to
be a null line, i.e., one containing no characters. . is changed

to the last line collected.

5-2

&APPEND. QED expects the user to type in a sequence
of lines; when DC is typed, the APPEND is
terminated, i.e., QED takes the lines
collected and inserts them after line A
in the main text buffer. If the address
A is omitted, the collected lines will be
zdded to the end of the main text buffer.
This is the u=l command for creating a
body of text from scratch.

A_INSERT.

ZCHANGE.

Fxamples:

+& $/
*APPEND.
NEW TEXT(DC)
*:NEW:INSERT.
FIRST(CR2
SECOND(D)
*1,$/
FIRST
SECOND
NEWTEXT
*2ApPEND.
THIRD(DC)
"1, $/
FIRST
SECOND
THIRD
NEW TEXT
%CHANGE.

g!jfjf$E';'

"1, $/
FIRST
SECOND
THIRD
FOURTH
FIFTH
Y

QED expects the
of lines; when D

Fser to type in a sequence
is typed, the INSERT is

terminated and the collected lines are
inserted before line A, in the main text
buffer.'

QED*ex$ects the sser to 'type in a sequence
oft lines; when D is typed the CHANGE is
terminated, the line(s) addressed by z
are deleted, and the collected lines are
put in their place. (The interval I
and the collected text need not havg the
same number of lines.)

there is nothing in the main text buffer.

a CR is supplied by QED to terminate the line.

the CR does not terminate the sequence of lines.

the collected lines were inserted before #l.

the collected line was inserted after #2.

the collected lines were inserted into the main
text buffer in place of the line NEW TEXT.

5-3

5.3 Changing Parts of Lines

These two commands -- EDIT and MODIFY -- 'allow the user (via

the control characters described in section 5.4) to change just

part of a line, and thus usually require less typing than the
same change made with CHARGE (which forces the user to type a

whole line over to make a small change in it.) . is changed

to the last line edited.

&EDIT. QED types out line A, and then expects a new line
to be typed in to replace A,. All of the control
characters described in section.4 are recognized;
the "old line" or line being edited is line A.
In particular, CR, DC, or Fc will terminate she
EDIT, and the new line replaces the old as line
A, in the main text buffer.

A_,gEDIT. is a convenience permitting repeated single-line
edits. Line A is typed out, and when the edit
of that line xs terminated (with CR, DC or F'),
the next line (A+l) is typed out for editing.
When the edit 07 the last line (line 2) is
terminated, and the new lines replace lines A,
through g in the main text buffer.

&ODIJ?Y. is exactly equivalent to @DIT. except that the
line being edited is not typed out at the
beginning of the edit.

A.,pODIFY. is exactly equivalent to &,EJEDIT. except that
the successive lines are not typed out before
the user begins to edit them.

Examples:

(The underlined characters are assumed to be those typed by

the user in the EDIT.)

5-4

*:CHCR:EDTl!.
CHCR SKG =77B
CECR SKE =155B(CR)

.
CECR SKE =155B
**MODIFY.

RLP CLA
*3,4EDIT.
A ZRO
Al BSS 1
B ZRO
Bl BSS 1
*314/
Al BSS 1
Bl BSS 1
*

old line #3.
new line #3.
old line #4.
new line #4.

For more (and more enlightening) examples of these two commands

see the examples in section 5.4 on control characters.

5.4 Control Characters for Text Input

The control characters described in this section facilitate

text input. All of them are recognized (and have the functions

described) in text input in the commands APPEND, INSERT, CHANGE,

EDIT, and MODIFY. In addition, those marked with an asterisk (*)

are recognized in the JAM INTO command, and in specifying the

text in searches and SUBSTITUTE. Finally, the following two

control characters (I' and Bc) are always recognized (except
immediately after a V'):

J c ,I:

/i_,;

Table of Contents for

Section 5.4

Tab and Buffer Call

Buffer Call

Tab

Line Terminate

Carriage Return

Escape Character

*take C literally

Backspace

"one'character

*one word

*one line

one character (restorative)

COPY
one character

to tab stop

to end of line

up to c

through c

rest of line (terminate)

rest of line (no typing)

Skip

one chitracter

up to c

through 2

Retype

fast

aligned

Re-Edit

concatenate-re-edit

Mode Change

insert/replace

ignore/usual

buffer 'l/usual

Character

BCC

IC

CR or MC

vcc

AC

WC

QC
NC

CC

UC

HC

occ

fC

DC

FC

SC

PCC

xcc

RC

TC

WC

EC

KC

LC

5-5

Page

5-5, Y-3

5-5

5-5

5-5

5-5

5-G

5-7
5-7

5-8

5-8

5-9

5-9
5-10

5-10

5-11

5-E
5-U

5-13

5-14

5-14

5-14

5-15
5-16

5-17
* Recognized in APPEND, INSERT, CHANGE, EDIT, MODIFY, JAM INTO, SUBSTITUTE, and

searches.

I -’

’ I

5-6

Tab and Buffer Call (Always Recognized)

BC c (where C is
buffer F. B

8 letter or a digit) is call of string
is echoed as #. Typing BCC is equivalent

to typi;g in the whole strdng of charact&s in buffer C.
(For a full description and examples see section 7.2) -

I" causes QED to space to the next tab stop (tab stops are
set with the command TABS, q.v.). If there are no more
tab stops on the line, QED types bell and takes no further
action.

The Carriage Return I
I

* MC is exactly equivalent to carriage-return (i.e., MC and
the CR key are two ways of typing the same character.)
QED automatically supplies a line-feed. Carriage-returns
serve to delimit lines of text. .In addition, a carriage-
return terminates editing of the current line in EDIT
or MODIFY. (It does not terminate an APPEND, INSERT or
CHANGE; only DC termixes these latter operations.)

The Escape Character

Jc vcc causes the character c to be appended literally to the
text being collected and disables any control function C
might otherwise have. c may be any character.

Examples:

*:A(VC):B:/ Vc prevents : which follows it from terminating the label.
A:B,A RATIO
*$-p-qp *
(V)(D)&D,144B(DC) (&D is typed by QED) V" allows the user to enter a DC
W (which types as &D) without terminating the APPEND.
&D,144B
x-

Backspace Characters

The following control characters delete one or more characters from the

end of the text already typed in; all of them may be iterated. If any of these

backspace characters causes the whole line currently being typed in to be

deleted, QED gives a carriage return and line-feed; typing may then continue.

* AC Qm types $ and deletes the preceding character. In
editing, A does not affect the status of the old line. ! \

Examples:
5-7

Suppose the user has typed in part of a search:

*EAcD

and then types two AC' s and continues typing:

*[ACD??BCD]/
ZABCD EF
*

in this case, the first AC deleted D, the second, C. Suppose the user

has begun ap EDIT:

*:NXC:EDIT.
ISIX! STA CHAR
Nxc s.

and now types AC:

*:NXC:EDIT.
IYXC! STA CHAR
NXC St

* WC

old line: 'TA CHAR'
new line: 'NXC S'

old line is still: 'TA CHAR '
new line is now: 'NXC I

QED types\ and deletes the preceding "word". That is,
all preceding blanks are deleted, and all non-blank
characters up to the next preceding blank.

Examples:

Suppose the user has begun to load a buffer:

*JAM INTO 443.
ALINE ('A LINE ' has been typed)

and now types WC and continues typing.

*JAM INTO #3.
A LINE \CHARACTER(DC)
*BUFFER ,#3.
"A CHARACTER"
SC

that is, the characters 'LINE ' were deleted. Suppose the user has t,yped:

*APPEND.
GC CIO mwF ('@J CIO N'EWF' has been t,yped)

and now types WC nnd continues typing:

*APPEND.
Gc cm ~N~FILENO(DC)
*/
Gc CIO 'FILENO
+

that is, the characters 'NEWF' were deleted.

543

* Qn” QED types c, gives a carriage return and line-
feed, and deletes the line currently being typed
in, or if there are no characters in the current
line, the preceding line is deleted (in line-
editing, the old line is restored as it was when
the edit began).

Examples:

Suppose the user has begun to type in a label:

*:NXCH

and then types Qc and continues typing:

-n:NXC!H+
PCHR:/
PCBR, GCD MSP
*

that is, the characters 'NXCH' were deleted. Suppose the user starts

the following insert:

*3INSERT.
ABC i.3
EFG
H

and now types two Qc's and continues typing:

*3INSERT.
ABC
EFG
H+-
t

line 'H' is deleted.
line 'EFG' is deleted.

DEF
GHI(D')
*3,5/
ABC
DEF
GHI
*

In this case, the first Qc deleted the line 'H', and the second deleted

the line 'EFG'.

NC QED types 1‘ and deletes the preceding character.
In addition, in edit mode, QED restores the last
charactdr obliterated from the old line, if any. :'-)

'\d

5-9

Example: I

If the user has begun the following edit:

*:IWC:EDIT.
Nxc STA
NXC S

CHAR old line: 'TA CHAR'
new line: 'NXC S'

and then types NC:

*:NXC:EDIT.
NXC STA CHAR old line is now: 'STA CHAR'
NXC St new line is G: 'N-XC ,

that is, Nc restored 'S' to the beginning of the old line.

Copy Characters

The following characters copy one or more ch:Lracters from the old line onto

the end of the new line. '(Except in DC and FC) if the old line contains no more

characters, or if the character to be copied to (in Zc and 0') does not appear

in the old line,, QED rings the bell (perhaps more than once) and takes no other

action.

CC &ED copies the next character of the old line onto
the new and types out the character copied.

Example:

*:NXC:EDIT.
NXCHR LDA CHAR old line: 'CHR IDA CHAR'
P.R new line: 'RR'

If the user now types a Cc:

*:NXC:EDIT.
NXCHR LDA CHAR old line: 'HR LDA CHAR'
PRC new line: 'PRC'

UC QED copies characters from the old line onto the
new, up to the next tab stop, and types out the
characters copied.

5-10
Example :

Suppose the tab stops are the usual ones (8,16,32,40) and the user

has begun an edit:

<’
I.3

*32EDIT.
A~345 67890
1.2

If the user now types U":

old line: '34567890'
new line: '12'

*VLDIT.
AB34567890
1234567

old line: '8go'
new line: '1234567'

H" QXD copies the rest of the old line onto the new,
typing out characters typed; editing may then continue.

Example:

*133EDIT.
STORE CHR,CNT,FLGl

INIT

If the user types Hc:

*133EDIT.
STORE CRR,CNT,FLGl

INIT STORE CHR,CNT,FIGl

old line: ' STORE CRR,CNT,FIGl'
new line: ,'INIT'

[:I

old line: " (null)
new line: 'Ill!uT STORE cm?, CNT, FLG1'

occ Q,ED c&pies the old line up to, and not including, the
next occurrence of the character C after the next
character, typing out characters ?opie& (C is never
echoed.)

Examples:

*WALLE]EDIX
SANG HALLRLUJAH!
SI

old line: 'NG HALLELUJAH!'
new line: 'SI'

If the user now types OCH:

*[HALLEIEDIT.
SANG HALLELUJAH!
SING

old line: 'HALLRLUJAH!'
new line: 'SING '

5-11

If he types OCH again: /

*[HALLR]EDIT.
SANG HALLFLUJAH! old line: 'H!'
SING HALLRLUJA new line: 'SING HALLRLUJA'

If the user again types O'H, WD will ring the bell and take no further

action since the line beyond the next character (the next character is H, the

line beyond is 'I') contains no further occurrences of H, i.e. QED has already

copied up to the last H of the old line.

7?C QED copies up through the next occurrence of the
character C in the old line. C is echoed when it
is copied,-not when it is typeh.

Example:

*CHALJ;EIEDIT.
SANG HALLRLUJAH!
SI

If the user' now t,ypes ZCH:

old line: 'NG HALLRLUJAH!'
new line: 'SI'

*[HALLRIEDIT.
SANG HALLSLUJAH!'
SING H

old line: 'ALLELUJAH!'
new line: 'SING H'

If he again: types ZCH:

*[IHALLE]EDIT.
SANG HALLELUJAH! old line: '!I
SXNG HALLELUJAH new line: 'SING HALLELUJAH'

If ZCH is typed again, QED will ring the bell and take no further action,

as there are no occurrences of H in the rest of the old line.

DC Q,ED copies the rest of the old line onto the new,c
typing out the characters copied. In addition, D
terminates the edit of the line in EDIT and MODIFY,
and terminates text-collection in APPEND, INSERT and
CHANGE (also in JAM INTO).

I
. .

. .

5-12

Ekamples:

+2lOEDIT..
STORE

INITl

I

CRR,CNT,FLGl.

1 ';J

old line: ' STORE CRR,C!NT,FLGl'
new line: 'INITl'

If DC is typed:

*?lOEDIT.
.

STORE CBR,CNT,FLGl
INIT STORE CHR,CNT,FLGl
+

\

+-this is the new line #210

Suppose the user has begun the following edit:

*13,1kEDIT.
A BSS 1
$A

and now types DC:

*13,14EDIT.
A BSS 1
$A BSS 1 the edit of line #13 terminates /
B BSS 1 and line #14 is typed out for editing.

(When the user terminates the edit of line #lb, the whole edit will
/'
I,~.3

! /

terminate and the lines typed in will become the new lines #13 and lb.),

Q,ED copies the rest of the old line onto the new
without typing it. In addition the edit of the line
is terminated in EDIT or MODIFY. (Fc does not
terminate an APPEND, INSERT, or CHANGE.) -

Example:

*:NX!HR:EDIT.
NXCJJR IDA
PV

CHAR old line: 'CXR LDA CHAR'
new line: 'PV'

If the user now types FC:

*:NXCHR:EDIT.
NXCHR IDA
PV
"4
PVCHR LDA
*

CHAR

CHAR

(the characters copied are not typed out).
Note that FC terminated the EDIT.

,
I --

I

5-13

Skip Characters

The following control characters cause one or more characters from the

old line to be skipped; the new line is not affected. Q,ED types s for each

character skipped. If there are no more characters in the old line, or if

the character to be skipped to (in PC and Xc) does not occur in the rest of

the old line, Q,BD rings the bell and takes no further action. (Editing may

then ,proceed normally.)

SC QED skips the next character of the old line.

Example:

*[CARTOIEDIT.
THE CARTONS OF SHELLS
THE CARTON

If the user now types SC:

old line: 'S OF SHELLS'
new line: 'THE CARTON'

*[CARTO]EDIT.
THE CARTONS OF $HELLS old line: ' OF SHELLS'
TM3 CARTON% new line: 'THE CARTON'

(At this point, the user could type DC and the new line 'THE CARTON

OF SHELLS' would be placed in the main text buffer and the EDIT would

be terminated.)

PC2 QFD skips up to (not including) the next occurrence
of the charactgr C in the old line after the next
character. (P iy the skip analogue of 0 .) C is
never echoed.

Example:

*CRALL;E]EDIT.
SANG HALLELUJAH!
SING

If the user now types PCH:

old line: ' HALLELUJAH!'
new line: t SING'

*[HAI;L;E]EDIT.
SANG HALLELUJAH!
SINGdR,

old line is now: 'HALLE!LUJAH!'
new line is still: ' SING'

5-14

If the user again types P'H:

*[HALI,E]EDIT.
SANG HALLELUJAH! old line: 'H! f
SING%$$%$%%%$$ new line is still: ' SING'

If the user again types P'H, QED will ring the bell and take no further

action, as it has already skipped up to the last H of the old line. --

XCC WD skips up through the next occurrence of the
chgracter C in the old line. C is never echoed.
(X is the-skip analogue of Zc~)

Example:

*[RALLE]EDM~.
SANG HALLRLUJAH!
SING

If the user now types XCH:

old line: ' HALI;FLUJAH!'
new line: 'SING'

*CHALLE]EDIF.
SANG HALLFLUJAH!
SING%$l

If the user again types XCH:

old line: 'ALLRLUJAH!'
new line is still: ' SING'

*[RALLR]EDIT.
SAM HALLELUJAH! old line: . t t ,

SI new line is still: ' SMG'

If XCH is typed once more, m will ring the bell and take no further

action, as there are no more H's in the old line.

Retype Ghnracters

The following control characters do not affect the state of the edit, 'but cm

merely retype the old and new lines, to permit the user to recover in case he

has become confused about the state of the edit. Editing may then continue

normally.

RC

5-15

QED types line-feed and then the rest of the old
line, and on the next line, the new line so fax
produced.

Example:

(Assume in this example that t indicates that AC was typed and $, indicates

a skipped character):

*glEDIT.
THE MANDALA (WHJCH FIGURES PROM- old line: 'URES PROM-'
StAEt@W MDtANDALA 8rr(r ($$$ new line: 'A MANDALA ('

URES PROM- old and new lines axe unchanged.
A MANDALA (

TC QED types out the state of the edit as in RC, except
that the rest of the old line is properly aligned with
the new.

Example:

Let us take the setup in the RC example above and assume thnt Tc is'typed

instead of RC:

TKE MANDALA (WIXtCH FIGVRES PROM-
srAFrfarml;~go;t (t ($+$$I

A MANDALA (
old and new lines axe unchanged.

The Re-Edit Character

Y” QJ3D copies (without typing) the rest of the old line
onto the new and then the result of this concatenation
may be re-edited. That is, QED gives a carriage-return
and line-feed and editing may continue; the old line
is now the result of the ooncatenation and the new line
is null.

Exnmple:

*.EDIT.
ZHT SKG
ZHTOT

old line: ' SKG MAX'
new line: 'ZIITOT'

5-16

If the user now types Yc:

*.EDIT.
ZHT SKG
7SiTOT old line: ' ZHTOT SKG MAX'

new line: " (null)

(Note that the characters copied are not typed out.) Suppose the user'

now types C and then DC:

*.EDLT.
ZHT SKG
ZHTOT
CHTOT SKG
*./
CHTOT SKG
*

Mode Characters

EC QED changes the mode from replace to insert, and
types <; or from insert to replace, and types >.
The mode is replace at the beginning of each line; i/
in replace mode, characters typed by the user replace .3

those of the old line one-for-one. In insert mode,
characters typed by the user are appended to the new
line, but the old line is unaffected. (Skips and
copies proceed as described above in either mode.)

Example:

*112NDIT.
RESTORING THE DAMAGED old line: ' THE DAMAGED'
RESTORATI new line: 'RESTORATI'

If the user types EC and continues typing:

*112NDIT.
RESTORING THE DAMAGED
RESTORATICON OF

old line is still: ' THE DAMAGED'
new line is now: 'RESTORATION OF'

And if the user now types Hc (q.v.):

*112EDIT.
RESTORING THE DAMAGED
RESTORATI~ON OF T.HE DAMAGED

old line is now: " (null)
the new line is: 'RESTORATION OF THE

DAMAGED'

\3

5-17

QED types " and changes mode from the usual one
to one in which no characters are appended to the
new line; or frorthis latter mode back to the usual
one. Mode is
of each line.

set to the usual one at the beginning

Example:

(Underlined characters are those which would normally have been appended

to the new line but were not because of the KC mode.)

*19,20EDIT.
CHC CIO FIX3 old line: 'CIO FILE'
CHC new line: 'CHC t

If the user types Kc and then HC (q.v.):

*19,20EDIT.
CHC CIO FILE old line: *) (null)
CHC "CIC FILE new line: 'CHC t

If the user now types carriage return:

*19,20EDIT.
CHC CIO FI'TZ
CHC "CIO FILE(CR)

SKG =77B old line: ' SKG =77B"
new line: 'CHC 1

Note that although the CR caused the edit of the next line to begin, it

was not appended to the new line, so that the new line is "left over" for the

edit of line #20. .Also, the Kc mode has been reset to the usual one by the

beginning of the line #20 edit. Suppose the user now types KC and then UC (q.v.):

*19,20EDIT.
CHC CIO FILE
CHC "CIO FILE(CR)

SKG =77B old ‘line: 'SKG
new line: ‘CHC

Now suppose the user types KC and then DC (q.v.):

*19,20EDIT.

=77B'
t

CHC CIO FILE
CHC "CIO FILE(CR)

SKG =77R

c
\ ,,
2)

"SKG =77B
*

5-18

Note that the single line 'CHC SKG " =77B’ replaced the old

lines #/19 and 20.

L" QED changes mode from the usual one to one in which
characters which are (or normally would be) appended
to the new line are also collected in a special (non-
addressable) internal buffer, and types [; or from this
latter mode back to the usual one, and types]. Buffer
1 is cleared. Whenever Lc is echoed as], the text in
this internal buffer is loaded into buffer 1. This
action is also taken when the user terminltes a line

in this special mode. The mode is reset to the usual
one at the beginning of each line.

Example:

(Assume that [and I indi.cate that L" was typed):

*BUFFER #l.
"AJX "
*:INIT~JAPPEND.

STORE [FLGl,FLG2,FIG3(CR~
STORE [F@+,FLG5],FlX%(D)

9.3l,./
STORE FLGl,FLG2, FLG3
STORE FLG4,FLG5,FLG6

*BUFFER #l.
"FLGl,FLG2, FLG3
FI&,FIG5"
*

(note that the mode is reset by CR)

(I,I,,i;,not affect the append
'3
" .

6-1

6.0 Substitute

The SUBSTITUTR command allows the user to substitute one string
Of characters for another in all or some of its occurrences in the
main text buffer. There are options giving the user a variable
amount of control over the individual substitutions and allowing
him to see each substitution before and/or after it is made.

The format of the command is:
InVERBOsE mode:

JSJRSTITUTE (options)/text"/FOR/text'/

In QUICK mode:

IS(options)/textn/texto/

Where the underlined portions of the command are typed by

the user. In place of /, the user may employ any character except

: or blank to delimit the two strings of characters, textn and
text'. To allow the user to make this command more readable,

blanks are ignored except in the two strings.

Text" and text' are strings of characters; neither may

contain carriage-returns, and text' should not be the null string.
The control characters Vc, AC, Qc and WC (described in section 5.4)

may be used while typing in the strings.

When the character terminating text' is typed, the SUBSTITUTE

begins and proceeds generally as follows: QRD begins on the first

line of the specified interval (I) and searches for occurrences

of text'. The search continues through the last line of the

specified interval (at which point the search, and the SUBSTITUTE,

terminate) or until an occurrence is found. In this case QRD may
or may not make the substitution of text" for text' (according

to the "options" specified). In either case, the search continues

immediately after that occurrence of the text' (or the textn that
replaced it) and proceeds as above, until the end of the interval

is encountered. At that point, QED types out an integer which is

the number of substitutions actually made.

6-2

The options possible are:

:G which causes Q,ED to make all substitutions without
typing. (It will terminate after g substitutions
if :IJ (q.v.) has been typed.)

:w Each time an occurrence of the string text' is found,
QED types out the,line containing it (with the
occurrence in question enclosed in double quotes)
and expects the user to type:

S which causes QED to make the substitution
and continue, or

option which causes QED to change to that option
and wait for the user to type S, another
option, or some other character.

any which causes QED to continue without making
other the substitution.

non-blank
character

:L after all the substitutions in a given line are made,
the line is typed out. (There must be at least one
substitution made in the line for this to happen.)

:v

:N

is the combination of :W and :L.

where 2 is a string of digits (terminated by the
first non-digit following it) causes Q,ED to make at
most g substitutions. That is, QED will terminate
the SUBSTITUTE normally when it has made N substitu-
tions. (If this option is omitted, the S~STITUTE
will terminate only when the end of the interval I
is reached.)

Options may be concatenated (e.g., SUBSTITUTE :L:lg/A/ FOR /B/

which will make at most 19 substitutions and list each one made)

and are interpreted thusly:

:g (2 is G, W, L, or V) overrides all previous :C-.

:PJ (g is an integer) overrides all previous :N.

The final2 and g are merged.

One may choose to give no options, which causes QED to make

all substitutions in the interval, without typing.

6-3

As examples of the SUBSTITUTE command, consider: (underlined

portions typed by the user.)' "

*SUBSTITUTE :V.HAS GIXEI'I. FOR.GAvE,
HE "GAVE" SEVERAL RXCITALS, OF
S note use of . instead of /
i!E HASGIVEN SEVERALRECITALS,OF
1
:ADDRI:,+~
ADDRlADDUPHA

BRX *-1
ADDR2 ADD BETA

ADD GAMMA
:L/ SUB/ FOR /&

ADDR2 SUB BETA (note use of blanks to keep

SUB GilMMA the labels ADDRI. and ADDR2 from

3 being changed)
*:mm31:,.+2
ADDR31 &D DJ3LTA.

BRX *-1
ADD EFS

*.-2 .SUBSTITUTE :W/SUB/ FOR /ADD1
"ADD"R31ADD DELTA
:G X
2
%-2,./
ADDR31 SUB DELTA

BRX *-1
SUB EPS

*

(note the use of :G to change
@#ions, and K to prevent a

~ substitute)

-- c _’
7-l

7.0 String Buffers

c)

C‘: /

Thirty-six string buffers are available to the user, named by

the digits (O-9) and letters (A-Z). Their contents may be any

string of characters. The contents of buffers 0 and 1 are affected
by searches, SUBSTITUTE, and Lc, as noted in the description of
these features. In general, string buffers O-9 are reserved to

joint use by QED and the user, i.e., both may affect their contents,
and this should be borne in mind when buffers O-9 are used. It is

advisable to use the lettered buffers (A-Z) when one wants the

contents of a buffer to be changed only when he explicitly changes

them (with LOAD, GET, KILL or JAM).

7.1 loading, Deleting and Frfnting Buffers

Each of the following five commands is specified by its first

letter; QED then completes the command up through the number sign

(#). The user then types a letter or a digit ((2) to specify a

buffer and then gives a confirming dot (.). (In QUICK mode, QED

only types out # to complete the command; the user then proceeds
as above. For example, in QUICK mode the command to print buffer

E will look like: *I#L where the underlined portions are typed

by the user.)

Any string buffer may be loaded with one of the three following
commands. A buffer is always cleared before it is loaded.

-FAD #c_* where C is a letter or a digit causes Q&D to
load sFring buffer c with the lines specified
by1. . is changed to the last line loaded.

SGET #c. causes &ED to load buffer E with the specified
lines, which are then deleted fram the main text
buffer. . is changed to the line before the
first one loaded.

JAM INTO #c. causes QED to go into text input mode. The user
may type in text (Vc, AC, Qc, Wc are recognized
and have the functions described in section 5.4),
terminated by a DC. QED then loads buffer 2
with the collected text.

7-2

The contents of a string buffer may be printed with:

BUFFER #g. which types the contents of buffer (Z, enclosed
in double quotes.

To delete -the contents of a buffer, type

which clears buffer 2. (Note: to delete the
contents of the main text buffer type
~,$DBIIETE.)

Examples: (suppose buffer E contains 'ABC')

MLIFFER #E.
“ABC”
*(JAY INTO #E.
NE'& CONTENTS
at3 LJFFER #E.
"~~'E',d CONTENTS"
*I/
FIRST LINE
*lLOAD tE.
*(LR IJFFEA #EC.
“FI HST LINE
91

(The double quotes are supplied by
the BUFFER command,)
(Note that no CR is supplied before
the DC; the contents of buffers need not
be lines.)

*1,4/
FIRST LX N,E
SECOND
TI-rIRD
FOIJR TH 1 I LI NE
&,3GET #5.
*1,2/
FIRST LINE
FG1Jf7 TH! ! LI NE
zrcPLlFFEH #5.
“S ECQND
Tt! I RD
II

(The old second and third lines were deleted.)

*KILL #5.
+FPUFFER kb5. . . 01 (Buffer 5 contains no text.)
*

,- \\
L’ ,’

c- ” / .I

7.2 The Uses of String Buffers

BCE is recognized at

7-3

all times, and is equivalent
to the user's typing the string of characters
,in buffer g (with th$ exception of command errors,
noted below). The B is echoed or a letter, as #,
and if BCC is typed, where C is not a digit QED
LypeS ? aEd ignores both BCand the character C.

Thus, string buffers can be used to.minimize typing in text

input; for example, suppose buffer W contains ' BSS 1' and the

user does the following INSERT. Assume in this example that #

indicates that BC was typed:

*llINSERT.
AhfW(CR >
JQ#W(CR)

;ii$$:;j
*11,14/
Al BSS 1
A2 BSS 1
Bl BSS 1
B2 BSS 1
*

Another use of string buffers is that of moving text. For

example (assume that # indicates that BC was typed):

*:TEMP1:,.*2/
TEMPl BSS 1
TEMP2 BSS 1
TEMP3 BSS 1
*.-2,.GET #X.
*115INSERT.
#X
*115,117/
TEMPl BSS 1
TEMP2 BSS 1
TEMP3 BSS 1
x-

(GET deletes the lines after loading the buffer)

(Note : buffer W still contains the three lines)

This sequence of commands was used to take the three lines in

question from their old position and insert them before line #x15.

7-4

Also, buffers may be used as a source of cammands. (An error

in a command taken from a buffer causes control to return directly

to the user, i.e., the whole hierarchy of buffers is aborted; the

contents of the buffers are not changed, of course. Rubout has

the same effect.) When commands are taken from buffers only
characters explicitly printed with the commands /, PRINT, line-feed,

t, "9 ?J ", or BUFFER are typed out. As an example of commands

from buffers consider:

*JAM IWTO #J.
:ABC:E.XYZ(VC)(DC)8cD(DC) &D is typed by QED; note the use of Vc

to enter a DC.
*BUFFER #J.
":ABC"E.XYZ&D"
*(~c)j+J
*

QED types out DC as &D.
is typed by QED.

At this point, all labels 'ABC' in the main text buffer have been

changed to 'XYZ'. The error of the search :ABC: when there are

no more labels of that form causes control to return to the user.

Buffers used in this way may call other buffers; that is,

if BCg fs ihserted in a buffer (with Vc) then when those characters

are accessed by Q,ED in reading from the buffer, they will cause

a transfer to buffer g until this latter is exhausted, at which
time contro'l returns to the characters following the Bcz in the

original buffer. Buffer g may call other buffers, in the same

manner. (However, if the contents of the calling buffers are

altered by the operations of the called buffer, peculiar things

may result.) For example, if we have:

*BUFFER #F.
"I.E.&H!
&BN"
*BUFFER #N.
". i-U.&H!
&BN"
*

7-5

Then if(BC)F is typed, each line of the main text buffer will

be edited in turn (nothing will be typed out), and at the end,
. l.e., when Q,ED finally types *, each line will have ! at the end.

The error of calling for .+l (in buffer N) when . is the last

line returns control to the user.

/
I

8-1
. \I

C’ .I’
8.0 Mode and Tab-Setting Commands

\ c _,!

8.1. Quick/Verbose Mode

QUICK. causes command completion (in command mode) to
be suppressed'except in the cases of READ FROM
and WRITE ON.

VERBOSE. restores command completion disabled by QUICK.
This is the usual mode.

Examples:

"XLEDIT. (verbose mode: 'DIT' is typed by QED)
CLA
CLB

%UICK.
*.E. (quick mode: 'DIT' not typed by QED)

CLB

'*RFAD % /T/. ('READ FROM' is unaffected)
901 WORDS.
*v. ('ERBOSE' is not typed by QED)
*llEDIT. (mode is verbose again)

CIX
CLAB

*

8.2 Ignore Characters Mode

(1 causes characters typed by the user to be ignored
(carriage return is still supplied with line-feed;
Ic (tab) and BC (buffer call) are still recognized)
until the next DC. Rubout also restores the mode
to the usual one. In addition, if this command
is read from a buffer, characters up to the next
DC are typed out. This is useful for printing
messages from buffers, as usually nothing
except explicit print commands causes printing
from buffers.

Examples:

*"THIS IS NOT(CR)
RECOGNIZED(CR)
BY QED(DC)
*l.LOAD.
"(CR)
MESSAGE(Vc)(Dc)&D(Dc) &D is typed by QED; note the use of Vc
*lBUFFER. to enter a DC without terminating the LOAD.

I
I
'jp

MESSAGE&D"
*(Bc)#l
MESSAGE
46

Only the first and last ((are supplied by QED.

a-2

8.3 Tab-Setting

TABS. QED gives a carriage return and line-feed and
then expects a. string of at most twelve decimal
numbers separated by commas (,) and terminated
by a dot (.); none of the numbers is to exceed
80. Also, the numbers should be in ascending
order of magnitude to avoid peculiar results.
If the input is deemed illegal, QED types ? and
,then the user may continue typing. QED sets
the tab stops to the specified positions. The
tab character is I'. (Full description in
section 5.4.) The tab stops are initialized
upon entry into QED to 8, 16, 32, 40.

Example:

VABS.
5,100
* sets the tab stops to 5 and 10.

9-l - ~ c \ ,/:

,\ c A’

9.0 Returning from QED and Panic Messages

9.1 The Normal Return

When the user is in comand mode, the command

FINISHED. may be used to return to the exec. If the last
command previous to the FINISHED command was a
WRITE command, or if there is no text in the main
text buffer, QED simply returns the user to the
exec . If there is text in the main text buffer
and the last command was not WRITE ON, QED types
WRITE OUT: (to remind the user to save his text
on a file before he leaves QED) and returns to
the exec.

If the user has returned to the exec fram QED and called no

other subsystem, nor done anything to cause a RESET, he may

continue Q,ED by typing

&ONTINUE QED.

This preserves the state'of QED as it was before he returned to

the exec (in particular, the main text buffer is unchanged).
However, typing

will get the user a "fresh" copy of QED, and in particular, one

with nothing in the main text buffer.

For example, after the sequence:

*FINISHED.
WRITE OUT!

~o~WDLEFT = 10 OUT OF 110
* .

the user may continue using QED just as though this sequence had

not been typed.

9.2 Rubout

The rubout button may be pressed at any time. If Q,ED is

inputting text, rubout will cause QJ3D to ring the bell, If a

second rubout is typed (with no intervening typing) the command

will be aborted and the text being input will be lost.

i
_/-------

In all other cases, typing a single rubout during the execution

of a command will cause the current operation to be aborted, and

Q.ED will return -to command mode. If QED is in the middle of

printing or writing a large number of lines, . willbe set to the

last line Rrinted or written. The value of . may be unpredictably

affected by aborting commands in this way.

In command mode, two rubouts with no intervening typing will

return the user to the exec. This is not the normal return

(see section 9.1 for the normal method of returning), but the

user may continue QJD with the executive command

@JONTINUE QED.
a.s described in section 9.1.

9.3 Palpic Messages

In certain contexts, QED will type out a message to warn

the user of a condition he might not otherwise be aware of:

NOROOM. indicates that the operation being executed
caused a memory trap. (Check machine size if
UNUSED MEMORY is >O.)

WON'T FIT.

#lFULL.

I-O ERROR.

NEARLY FVLL

EDITTERMmTED

indicates that the attempt to load a string
buffer will overflow the area allocated for
string buffers. The buffer concerned will have
been cleared but not loaded.

indicates that the operations of Lc (q.v.) have
filled the special internal buffer allocated
for them, and no more characters will be collected
using LC. Text input may continue normally.

indicates that a READ or WRITE was terminated
on some abnormal condition, possibly an unexpected
end of record.

indicates that text 5nput has caused the internal
text-collection buffer to fill nearly to capacity.
The user may continue inputting text as usual,
but if he does not terminate text input before
the internal buffer overflows, he will get the
message:

indicating that Q,ED simulated a DC and terminated
text input. &ED then returns to command mode.

I c. \ .’

-- c >

c1 \ /

AC
BCN

CC

DC

EC

FC

GC

HC

IC

J"

KC
C

ii

NC

occ

PCC

Qc-
RC

SC

TC

UC

PC

WC

XC2

Y"

!fC

&

LC
v

tC

lC

APPENDIX A: INDEX OF CONTROL CHARACTERS

backspace one character (t)

call of buffer g (#)

copy (typing) one character

copy (typing) rest of line and terminate

change insert/replace mode (< , >)

copy (no typing) rest of line and terminate

(bell) no function

copy (typing) rest of line

tab

cannot be typed in

change ignore/usual mode (")

change buffer l/usual mode ([,I)

(carriage return) terminate line (and edit)

backspace one character, restorative (t)

copy (typing) up to 2

skip up to 2 (%%* ..%)

backspace one line (b)

retype, fast

skip one character (5)

retype, aligned

copy (typing) to next tab stop

take 2 literally

backspace word ()

skip through C ($$..."t;)

concatenate and re-edit

copy (typing) through 2

no function

no function

no function

no function

no function

no function

(See also the table of contents for section 3.4)

Page

5-5
5-5, 7-3
5-B
5-10
5-15
5-11

5-9
5-5

5-16
5-17
5-5
5-7
5-9
5-12

5-7
5-14
5-12
5-14
5-a
5-5
5-6
5-13
5-14
5-10

(\ I _\ J

‘1 c .)
Command
I,

/
z

t

c

(line-feed)

APFJ3ND

BUFFER

CHANGE

DELETE

EDIT

FINISJZD

GET

INSERT

-\
c

JAM INTO
1 KILL

LOAD

MODIFY

PRINT

QUICK

READFROM

SUBSTITUTE

TABS

VERBOSE _
WRITE ON

APPENDIX B: INDEX OF COMMANDS

. . ..c..............*

. e l . . .

. . . C . . *

.

.

.

.

....................

....................

.

.

....................

.

.* ,, .

....................

....................

....................

....................

........ <

....................

.,

.a

.

.

.

Page

8-l

3-l

2-3

3-l

2-3

3-l

5-2

7-2

5-2

5-l

5-3

9-l

7-l

5-z

7-1

7-2

7-l

5-3

3-l
8-l

4-l

6-l

6-2

8-l

4-l

Note : A description of searches is in #4 and 5 under section 2.1, pages

2-l and 2-2.

.

