®

REFERENCE MANUAL
Q. E. D.
TIME-SHARING EDITOR

D. C. Angluin
L. P. Deutsch

Document No. R-15
Revised March 26, 1968
Contract SD-185
Office of Secretary of Defense
Advenced Research Projects Agency
Washington, D. C. 2033 |

()

TABLE OF CONTENTS

Introduction .

1.1 A Summary Description .

1.2 Command Mode, Formats .

1.3 Notation and Conventions
Addressing Text

2.1 legal Addresses .

@.2 Type Address Commands .

2.3 Examples for Section 2.0

Printing Text

Suving Text on Files

Destroying, Creating and Changing Lines
5.1 Deleting Lines

Adding Lines

5.3 Changing Parts of Lines .

5.4 Control Characters for Text Input .
Substitute .

String Buffers .

7.1 Loading, Deleting, and Printing Buffers .

7.2 The Uses of String Buffers
Mode and Tab-Setting Commands
8.1 Quick/Verbose Mode

8.2 1Ignore Characters Mode
8.3 Tab-Setting .

Returning from QED and Panic Messages

9.1 The Normal Return
9.2 Rubout
9.3 Panic Messages

APPENDIX A: Index of Control Characters

APPENDTX B: Index of Commands

1-1
1-1
1-1
1-2

]
¢

2-1

8-1
8-1
8-1
8-2
9-1
9-1
9-1
9-2

1.0 Introduction

1.1 A Summary Description

QED is a rather powerful program for editing symbolic text
which runs under the 930 time-sharing system. Tts input and
output are symbolic files which can also be handled by the

‘executive COPY commend. It has extensive facilities for

inserting, deleting and changing lines of text, a line edit
feature, a powerful symbolic search feature, sutomatic tabs

which may be set by the user, and thirty-six buffers. Text

can be read from any file and written onto any file. A replace
command permits all occurrences of a specified string of characters
to be replaced with another string.

1.2 Command Mode, Formats

To enter QED from the executive type QED. (underlined
portions are typed by the user.) QED will type a * and the user
may type any of the commands described in this manual. When
the operation of a command éZE?gg}minated and QED is ready for
another command, it again types *; at this point QED is waiting
for commands and is said to be in "command mode."

The formats 63?%he various commandsare of three basic types:

1. A single (non-alphanumeric) character (possibly preceded
by line address(es)), for example: / and %, which
requires no confirming dot, but rather begins its
specified function as soon as the character is typed.

2. A commend word (possibly preceded by line address(es)),
for example: TABS and MODIFY, which require a confirming
dot before the specified function is begun. In typing
the command word, the user only types the initial
letter, then QED recognizes the command and types the

rest of it. The user may then type a dot (.) to
confirm the command, or any other character, in which
case the command will be sborted.

1-2
3. Mavericks, namely: READ FROM, WRITE ON, SUBSTITUTE and »
the buffer commands (LOAD, GET, JAM, BUFFER and KILL)
each of which is specified by typing its initial
letter (QED types the rest) but otherwise has a unique
format (for fuller'explanation see individual descrip-
tions).
For a list of all commands recognized in command mode (and the
locations of their descriptions) see Appendix B.

1.3 Notation and Conventions

A character with a following superscript C is a control
character and is typed by pressing the control key togéther with
the key for the basic character, for example, D% is control D
and is typed by holding down the control key and pressing the key
for D. Control characters do not have any printing characters
normally associated with them; to emphasize that nothing is
printed when they are typed, in the examples they are enclosed in (::)
parentheses (which, apart from the function of emphasizing this
fact, should be ignored). In certain contexts, QED will print
some character when a control character is typed (e.g.,

for B, ¢ for AS, \ for W®). This is noted in the individual
descriptions of the control characters, section 5.4. Also,

when a control character is part of the text being input from
output to the teletype, QED will represent gi as & (where c

is some printing character), for example, 1€ will be typed as &?t.

'C' is used throughout this manual to indicate a single
(arbitrary) character. 'A', 'B' and"l' are described in under
text addressing, section 2.1. Apart from these special symbols,
(in the examples and format-specificetions) lower case letters,
parentheses, and underlining are used for comments, explanation,
and variable structures (always specified more fully in their
descriptions); and all other characters are literally typed by
QED or the user in specifying or executing the operation concerned.

2-1

2.0 Addressing Text

The text being edited is held in a single buffer, called
the main text buffer. It consists of a series of lines delimited
by carriage returns (CR's). The line is the only addressable
unit of text. |

2.1 TLegal Addresses

Lines may be addressed in the following ways:

1.
2.

By decimal numbers. The first line is numbered 1.

By . (called 'dot'), which refers to the current

line. The value of . is changed by many of the
editor's commands, as noted below.

By $, which always refers to the last line in the main
text buffer. '

By labels. The structure :text: typed in command mode
causes a search for the indicated text at the beginning
of a line and followed by a character which is not a
letter or a digit. When typing in the text, Ac, Wc,

Q® and V° have their usual functions (see section 5.4).
The text may contain any characters, may be a maximum

of 30 characters long, and is terminated by a colon (:).
The search begins with the line after the current line,
and cycles to the beginning of the buffer if it runs

off the end. Buffer O is loaded with the text searched
for. If the search succeeds, . addresses the line

where the label was found, and the value of :text: is

also this line. (Note that QED does not type any response
specifically to indicate fhat a search succeeded.)

If there is no line with the specified label in the
main text buffer, QED types ? and restarts command input.
(In this case . is not changed.)

The search may be begun at line A where A is any
legal address), instead of at .+l, by typing A:text:

For example, .:ABC: begins the search at the current

line.

5. By arbitrary text. The structure [text] causes a
search for the specified text anywhere in the main
text buffer. The text may contain any characters
(and arbitrarily many of them) and is terminated by].

' The search proceeds .vin the same way as the label
search (4), and has the same effect when it succeeds
or fails. Altext] starts the search of line A, as

in label search.

6. By a legal address followed by +, - or space, followed
by another legal address. This construction has the
obvious meaning with the following qualifications:

a) Space is treated as +

b) A+B, A B, or A-B where A is any legal address and
B is a gsearch is equivalent to AB, i.e., the search
for B is begun at A and if it is successful, . and
A+B (or A B or A-B) address the line where the
search succeeded.

c) After a search has been given in an address, . and $
may not be added to or subtracted from the address
being constructed. E.‘g., stext:+$, [text]-., and
rtext:+9-. are not legal addresses.

d) There can only be one occurrence of . or $ in a
given address. E.g., $-., .+., $+$-15 are not
legal addresses.

Throughout the remainder of this manual, the symbols A and
B will represent any legal line addresses. Also, the symbol I
will indicate that a single line address, A, may be given; or
a pair of line addresses separated by a comma (thus: A,B),
where the second address is at least as great as the first. In
this latter case, the interval is inclusive, i.e., A,B specifies
lines A through B. (A,B where B is less then A is treated as
an illegal parameter.) Or, one may type&, which addresses
all the lines in the main text buffer. (And is thus equivalent
to 1,5%.)

2-3

Generally, if no line addresses are typed before a commend,
the interval is taken to be just the current line. For example:
*DELETE. is equivalent to *.DELETE. and */ is equivelent to
*,/ . Exceptions to this are:

¥APPEND. , which is equivalent to *$APPEND.

¥READ FROM, which is equivalent to *$READ FROM

#WRITE ON, which is equivalent to *1,$WRITE ON
If an address being typed in is deemed to be illegal, QED types
? and restarts command input. When a command is given, negative
line addresses are converted to 1, and an address greater than
thet of the last line is treated as an illegal parameter, i.e.,
QED types ? and restarts command input.

(Note: exsmples for text-addressing and type address
commands are in section 2.3.)

2.2 Type Address Commands

To facilitate text addressing, there are two commands which

convert between sbsolute line numbers and symbolic addresses.

A= (where A is any legal address) causes QED to type
the line number of the line addressed by A.

A causes QED to type the "symbolic address” of the
line addressed by A. (That is, the label of the
last line preceding A which has a label, followed
by a decimal number indicating its displacement
from A. (The label part of the address is enclosed
in colons)). For this command, any line which
begins with something other than a carriage-return
or a blank has a label, and the label typed out will
terminate with the first character after the initial
one which is not a letter or a digit. For example,
the label typed out for the line ¥AB¥*C will be
+¥AB:, and that for *¥AB¥C will be :*:

2.3 Examples for Section 2.0

Tt is assumed that the reader is familiar with the command
/ which types out the line or lines addressed.

»@/

FIRST LINE

SECOND
THIRD

FOURTH! ! LINE

##FIFTH

*1/

FIRST LINE

*,=1

*, et FIRST

*$=5

*$/

##FPIFTH

%3 SECOND : =2

*, %2

*:FOURTH : /

FOURTH! ! LINE

*:POUR ¢?

*:FOURTH! : /

FOURTH! ! LINE

*:FPOURTH! !:?

%:POURTH! :¢«~:FOURTH:

*[#1=5 '

*[H!!'L]=l

*[8T]=1

*,¢2FIRST:

*[FT et

*[INE]=1

*, =1

*[INE] =4

*[INE]=1

*, [INE]=1

*2[INE] =4

*5 [INE]=1

*W [INE =4

*:FIRST:[INE]=1

*1[{ TRST] [IRD] [INE]=h

*sFIRST: : SECOND: [IRD} [FI]e2#:

*.25

*.1/

?

*1/

FIRST LINE

* 42/
THIRD

*.,¢+SECOND:1

*, 425

*, exfte

*$-2=3

*

()

)

R

3-1

3.0 Printing Text

As text is kept "out of sight" in the main text buffer, the
user must explicitly direct QFED to type out a line or lines
for his inspection.

There are four basic print commands (in each, the value of
. is changed to the last line typed out):

I/ types out the lines(s) addressed by the
interval I. ;

line-feed types out the next line (i.e., .H+1).
? types out the previous line (i.e., .-1).

IPRINT. allows formatted printing of the line(s)
addressed by I; on the next line, QED types
DOUBLE? and expects the user to type Yor N
(which will be completed as YES or NO, respec-
tively) in response, to indicate whether he
desires double-spacing of the text. QED then
types the lines in pages of 54 (single-spaced)
or 27 (double-spaced) lines; before each page,
QED types a number of line-feeds, a short dashed
line, and an equal number of line-feeds. Also,
the last page is filled out to the size of the
others and merked at the bottom with a dashed
line.

Examples:

*1,$/
FIRST LINE
SECOND

THIRD
FOURTH! ! LINE
##FIFTH
*t
FOURTH! ! LINE
*1

THIRD
»*

FOURTH: ! LINE
*

#HHFPIFTH
%

?

*1/

FIRST LINE
*#17

*2, sFOURTH : PRINT.
DOUBLE? YES

SECOND
THIRD
FOURTH! ! LINE

3-2

4.0 Saving Text On Files

L-1

The following two commands enable the user to move text

between QED's main text buffer and symbolic files.

They accept

file names in the format required by the executive.

AREAD FROM (file name).

IWRITE ON (file name).

Exemples:

*15,17/

A BCD
12345678

EFGH

*15,17WRITE ON /TEST/.
9 WORDS.

*$=115

*READ FROM /TEST/.
9 WORDS.

*$=118

*$'2’$/

A BCD
12345678

EFGH
*

QED reads all the text from the
specified file (which should be
type 3, symbolic) and appends it
after line A.

*READ FROM is the same as *$READ FROM.

After QED has finished reading the
text, it types out the number of
"words'" read, (One "word" is approxi-
mately 3 characters.) and returns

to command mode.

The main text buffer is ggg cleared
before the READ.

QED replaces the contents of the
specified file with the lines in
the interval I.

¥WRITE ON is the same as
*1,$WRITE ON

After QED has finished writing the
text, it prints out the number of
"words" written and returns to
command mode.

The main text buffer is unaffected
by the WRITE.

(the lines read were appended, and
the main text buffer was not cleared
first.)

5-1

5.0 Destroying, Creating and Changing Lines

The following sections describe the heart of QED: the
commands by which the user changes the text held in the main
text buffer:

5.1 Deleting Lines

IDELETE. causes the line(s) addressed to be
o deleted from the main text buffer;
. 18 set to the line before the
first one deleted.

Example:
*1,4/ print the first four lines
FIRST LINE
SECOND
THIRD
LINE FOUR
#$=115 there are 115 lines in the main text buffer.
%2, 3DELETE. delete the second and third lines.
*, =1 . is the line before the first one deleted (#2).
*$sl}3 there are 2 fewer lines in the main text buffer.
*1,2
FIRST LINE the old second and third lines have been deleted.
LINE FOUR
*

5.2 Adding Lines

After each of the following three commands -- APPEND, INSERT,
and CHANGE -- QED expects the user to type ih a series of lines
(each terminated by a carriege-return), the whole series followed
by a D° to indicate the end of the series. QED then takes the
lines so collected and puts them into the main text buffer in
the position specified by the commend (see individual descriptions.)
(If the user does not follow the last line with a carriage-return
before he types the Dc, QED will insert the necessary carriagé—
return.) In addition to Dc, all of the control characters described
in section 5.4 are recognized; the line being edited is teken to
be a null line, i.e., one containing no characters. . is changed
to the last line collected.

AAPFEND.

ATNSERT.

ICHANGE.

Examples:

*1,$/
*APPEND.
NEW TEXT (D)
* ¢NEW : INSERT.
FIRST(CRQ
SECOND(D")
*1,$/
FIRST
SECOND
NEW TEXT
*2APPEND .
THIRD(D®)
*1,$/
FIRST
SECOND
THIRD

NEW TEXT
*$CHANGE .
FOURTH(CR)
FIFTH(DC)
*1,$/
FIRST
SECOND
THIRD
FOURTH

FIFTH
*

5-2

QED. expects the yser to type in a sequence
of lines; when D~ is typed, the APPEND is
terminated, i.e., QED takes the lines
collected and inserts them after line A
in the main text buffer. If the address
A is omitted, the collected lines will be
added to the end of the main text buffer.
This is the usual command for creating a
body of text from scratch.

QED expects the yser to type in a sequence
of lines; when D~ is typed, the INSERT is
terminated and the collected lines are
inserted before line A in the main text
buffer. .

QED ‘expects the yser to type in a sequence
of lines; when D~ is typed the CHANGE is
terminated, the line(s) addressed by I
are deleted, and the collected lines are
put in their place. (The interval I

“and the collected text need not have the

same number of lines.)

there is nothing in the main text buffer.

a CR is supplied by QED to terminate the line.

the CR does not terminate the sequence of lines.

the collected lines were inserted before #1.

the collected line was inserted after #2.

the collected lines were inserted into the main
text buffer in place of the line NEW TEXT.

C

5.3 Changing Parts of Lines

These two commands -- EDIT and MODIFY -- allow the user (via
the control characters described in section 5.4t) to change just

part of & line, and thus usually require less typing than the.

same change made with CHANGE (which forces the user to type a

whole line over to make a small chenge in it.) . is changed
to the last line edited.

AEDTT.

A,BEDIT.

AMODIFY.

A,BMODIFY.

Examples:

QED types out line A and then expects a8 new line
to be typed in to replace A. All of the control
characters described in section 5 5.4 are recognized;
the "old line" or line being edited is line A.

In particular, CR, D¢, or F¢ will terminate the
EDIT, and the new line replaces the old as line

A in the main text buffer.

is a convenience permitting repeated single-line
edits. Line A is typed out, and when the edit
of that line is terminated (with CR, D¢ or F°),
the next line (A+l) is typed out for editing.
When the edit of the last line (line B) is
terminated, and the new lines replace “lines A
through B in the main text buffer.

is exactly equivalent to AEDIT. except that the
line being edited is not typed out at the
beginning of the edit.

is exactly equivalent to A,BEDIT. except that
the Successive lines are not typed out before
the user begins to edit theni.

(The underlined characters are assumed to be those typed by
the user in the EDIT.)

5k

*:CHCR :EDIT.

CHCR SKG =T7B

CECR SKE. =155B(CR)

*

CECR SKE =155B

* ,MODIFY.

RLP CLA(CR)

*

RLP CIA

*3,4EDTT. '

A ZRO old line #3.
Al BSS 1 new line #3.

B ZRO old line #u.

Bl BSS 1 new line #4.

*3,4/

Al BSS 1

Bl BSS 1

¥*

For more (and more enlightening) examples of these two commands

see the examples in section 5.4 on control characters.

5.4 Control Characters for Text Input

The control characters described in this section facilitate
text input. All of them are recognized (and have the functions
descrived) in text input in the commands APPEND, INSERT, CHANGE,
EDIT, and MODIFY. In addition, those marked with an asterisk (%)
are recognized in the JAM INTO command, and in specifying the
text in searches and SUBSTITUTE. Finsally, the following two
control characters (I° and B®) are always recognized (except
immediately after a v©):

@

~—

Table of Contenks for

Section 5.4

Tab and Buffer Call

Line

Buffer Call
Tab .
Terminate

Carriage Return

Escape Character
*toke C literally

Backspace

*one character

*one word

¥one line

Copy

Skip

one character (restorative)

one character

to tab stop

to end of line

up to C

through C

rest of line (terminate)

rest of line (no typing)

one character
up to C
through C

Retype

fast
aligned

Re-Edit

Mode

searches.

concatenate-re-edit
Change
insert/replace
ignore/usual
buffer 31/usual

Character
B°C

Page
5'5) 7"“3
5-5

5-5

5-9

5-12
512

5-13

514
514

5-1k
5-15

5-16
5-17

* Recognized in APPEND, INSERT, CHANGE, EDIT, MODIFY, JAM INTO, SUBSTITUTE, and

5«6

Pab and Buffer Call (Always Recognized)

B° ¢

The Carriage Return

The Escape Character

v°c

Examples:

*:A(V°):B:/
iéB%gERATIO

(f)(n)&D, LWB(D)
&D{lth

Backspace Characters

(where C is g letter or a digit) is call of string

buffer C. B~ is echoed as #. Typing B°C is equivalent
to typing in the whole string of characters in buffer C.
(For a full description and examples see section 7.2) ~

causes QED to space to the next tab stop (tab stops are
set with the command TABS, ¢.v.). If there are no more
tab stops on the line, QED types bell and takes no further
action.

is exactly equivalent to carriage-return (i.e., M° and
the CR key are two ways of typing the same character.)
QED automaticelly supplies a line-feed. Carriage-returns
serve to delimit lines of text. In addition, a carriage-
return terminates editing of the current line in EDIT

or MODIFY. (Ig does not terminate an APPEND, INSERT or
CHANGE; only D~ terminates these latter operations.)

causes the character C to be appended literally to the
text being collected and disables any control function C
might otherwise have. C may be any character.

v© prevents : which follows it from terminating the label.

(8D is typed by QED) V° allows the user to enter a p°
(which types as &D) without terminating the APPEND.

The following control characters delete one or more characters from the

end of the text already typed inj all of them may be iterated. If any of these

backspace characters

causes the whole line currently being typed in to be

deleted, QED gives a carriage return and line-feed; typing may then continue.

AC

QED types 3 and deletes the preceding character. In
editing, A~ does not affect the status of the old line.

Exsmples:

Suppose the user has typed in part of a search:

*{ACD

and then tybes two Ac's and continues typing:

*[ACDt1BCD]/
7ABCD EF
+*

in this case, the first A® geleted D, the second, C. Suppose the user

has begun an EDIT:

*:NXC:EDIT.
NXC STA CHAR old line: 'TA CHAR'
NXC S . new line: 'NXC s

and now types A%:

*:NXC:EDIT.

NXC STA CHAR 0ld line is still: 'TA CHAR'

NXCc st ‘ new line is now: 'NXC '

we ‘ QED types \ and deletes the preceding "word". That is,
all preceding blanks are deleted, and all non-blank
characters up to the next preceding blank.

Examples:

Suppose the user has begun to load a buffer:

*JAM INTO #3. _
A LINE ('A LINE ' has been typed)

and now typés wc and continues typing.

*JAM INTO #3.

A LINE \CHARACTER(D®)
¥BUFFER #3.

"A CHARACTER"

*

that is, the characters 'LINE ' were deleted. Suppose the user has typed:

*APPEND.
Ge CIO NEWF ('ac CIO0 NEWF' has been typed)

and now tyges W and continues typing:

*APPEND. | .
ac CI0 NEWF\FILENO(D)
*/ : ‘

ac cT0 FILENO

M ‘

that is, the characters 'NEWF' were deleted.

5-8

C : '

Q@ QED types «, gives a carriage return and line-
feed, and deletes the line currently being typed
in, or if there are no characters in the current
line, the preceding line is deleted (in line-
editing, the old line is restored as it was when
the edit began).

Examples:

Suppose the user has begun to type in a label:

* s NXCH

and then types Qc and continues typing:

* s NXCHe

PCHR:/

PCHR GCD MSP

* .

that is, the characters 'NXCH' were deleted. Suppose the user starts
the foliowing insert:

*3INSERT.

ABC

EFG

H

and now types two Qc 'vs and continues typing:

*3INSERT.

ABC

EFG

He- line 'H' is deleted.

- line 'EFG' is deleted.

DEF '

GHI(D™)

*3,5/

ABC

DEF

GHI

*

In this case, the first Q,c deleted the line 'H', and the second deleted

the line 'EFG'.

Nc QED types * and deletes the preceding character.
In addition, in edit mode, QED restores the last
charactédr obliterated from the old line, if any.

D

Example:

If the user has begun the following edit:

*«XC+sEDIT.
NXC STA - CHAR old line: 'TA CHAR'
NXC 3 ; new line: 'NXC S

and then types Nc:

*¢NXC:EDIT.
NXC STA CHAR old line is now: 'STA CHAR'
NXC St ‘ new line is now: 'NXC !

that is, N restored 'S' to the beginning of the o0ld line.

Copy Characters3

The following characters copy one or more characters from thelold line onto
the end of the ﬁew line. “(Except in D° and F®) if the old line contains no more
characters, or if the character to be copied to (in ZC and OC) does not appear
in the old line; QED rings the bell (perhaps more than onée) and takes no other
action.

¢ QED copies the next character of the old line onto

the new and types out the character copied.

Example:

*sNXC:EDIT.
NXCHR IDA CHAR 0ld line: 'CHR LDA CHAR'
PR ‘ new line: 'FR'

If the user now types a Cc:

*¢NXC:EDIT.

NXCHR IDA CHAR old line: 'HR LDA CHAR'

PRC new line: 'PRC’

u® QED copies characters from the old line onto the

new, up to the next tab stop, and types out the
characters copied.

5-10
Kxample: P
Suppose the tab stops are the usual ones (8,16,32,40) and the user \;:>

has begun an edit:

*32EDIT.
AB34567890 old line: '34567890"
12 new line: '12'

If the user now types uC:

*32EDIT. .
AB3U4567890 old line: '890'
1234567 new line: '1234567'
i QED copies the rest of the old line onto the new,
typing out characters typed; editing may then continue.
Example:
*133EDIT.
STORE CHR,CNT, FLG1 old line: ' STORE CHR,CNT, FLGL’
INTIT new line: 'INIT'
c .
If the user types H : Q:)
*133EDIT.
STORE CHR,CNT,FLG1 0old line: '' (null)
INIT STORE CHR, CNT,FLG1 new line: 'INIT STORE CHR, CNT, FLGL'
e QED capies the old line up to, and not including, the
next occurrence of the character C after the next
character, typing out characters copied. Qg is never
echoed.)
Examples:
*[HALLE]JEDIT.
SANG HALLELUJAH! old line: 'NG HALLELUJAH!'
ST new line: 'SI'

If the user now types OcH:

*[HALLEJEDIT.
SANG HALLELUJAH! old line: ‘'HALLELUJAH!'
SING new line: 'SING '

N

If he types 0°H again: “

*[HALLE 1EDIT. ‘
SANG HALLELUJAH! old line:
SING HALLELUJA new line:

5-11

!H!'
'SING HALLELUJA'

If the user again types OCH, QED will ring the bell and take no further

action since the line beyond the next character (the next character is H, the

line beyond is '!') cortains no further occurrences of H, i.e. QED has already

copied up to the‘last H of the old line.

ch QED copies up through the next occurrence of the
character C in the old line. C is echoed when it
is copied, not when it is typed.
Example:
*[HALLE]EDIT.
SANG HALLELUJAH' 0ld line: 'N@ HALLELUJAH!'
ST new line: 'SI'
If the user! now types ZCH:
*[HALLE JEDIT.
SANG HALLEILUJAH! 0ld line: 'ALLELUJAH!'
SING H new line: 'SING H'
If he again types 72 H:
*[HALLE]EDIT.
BANG HALLELUJAH! 0ld line: '!!
SING HALLELUJAH new line: 'SING HALLELUJAH'

1f 7°H is typed again, QED will ring the bell and take no further action,

as there are no ioccurrences of H in the rest of the old line.

D QED copies the rest of the old line onto the new,
typing out the characters copied. 1In addition, D
terminates the edit of the line in EDIT and MODIFY,
and terminates text-collection in APPEND, INSERT and
CHANGE (also in JAM INTO).

5-12
Examples:

’

#210EDIT..

INTTL new line: “INIT1'

1f D° is typed: ‘ \

*210EDIT. : o

STORE CHR,CNT, FL&1
INITL STORE CHR,CNT, FLGL « this is the new line #210
*

Suppose the user has begun the following edit:

*13, 14EDIT.
A BSS 1
$A

and now types Dc:

*13, 1LEDIT.

A BSS 1

$A BSS 1 the edit of line #13 terminates

B BSS 1 and line #14 is typed out for editing.

(Wwhen the user terminates the edit of line #14, the whole edit will

terminate and the lines typed in will become the new lines #13 and 14.)

F QED copies the rest of the old line onto the new
without typing it. In addition the gdit of the line
is terminated in EDIT or MODIFY. (F does not

terminate an APPEND, INSERT, or CHANGE.)

Example:

% +NXCHR :EDIT.

NXCHR LDA CHAR old line: 'CHR IDA CHAR'
PV new line: 'PV!

If the user now types Fc:

*¢NXCHR :EDIT.

NXCHR IDA CHAR :

PV (the characters copied are not typed out).
*./ Note that F® terminated the EDIT.

PVCHR LDA CHAR

*

STORE _ CHR,CNT, FIG1. 0ld line: ' STORE CHR,CNT,FLG1'

O

5-13

Skip Characters

The féllowing control characters cause one or more characters from the
0ld line to be skipped; the new line is not affected. QED types % for each
character skipped. If there are no more characters in the old line, or if
the character td be skipped to (in Pc and Xc) does not occur in thekrest of
the o0ld line, QED rings the bell and takes no furﬁher action. (Editing may

then proceed nofmally.)

g® QED skips the next character of £he old line.
Example:
*[CARTO)EDIT.
THE CARTONS OF $HELLS 0ld line: 'S OF SHELLS'
THE CARTON new line: 'THE CARTON'
If the user now types Sc:
*[CARTO]EDIT. .
THE CARTONS OF $HELLS old line: ' OF SHELLS'
THE CARTON% new line: 'THE CARTON'

(At this point, the user could type D and the new line 'THE CARTON

OF SHELLS' would be placed in the main text buffer and the EDIT would
be terminated.)

e ' QED skips up to (not including) the next occurrence
- of the charactgr C in the old line after the next

character. (P° is the skip analogue of 0 .) C is
never echoed.

Example:

*[HALLE]EDIT.

SANG HALLELUJAH: old line: ' HALLELUJAH:'

SING new line: 'SING'

If the user now types P°H:

*[HALLE JEDIT.

SANG HALLELUJAH! old line is now: 'HALLELUJAH!'

SING% new line is still: 'SING'

5-1h

If the user again types PCH:)
*[HALLE JEDIT.
SANG HALLELUJAH! old line: 'H!'
SINGHLAIEEETH% ' new line is still: 'SING'

If the user againvtypes PCH, QED will ring the bell and take no further

action, as it has already skipped up to the last H of the old line.

c
Xc QED skips up through the next occurrence of the
chgracter C in the old line. C is never echoed.
(X~ is the skip analogue of Zz€7)
Example:
*[HALLE]EDIT.
SANG HALLELUJAH! 0ld line: ' HALLELUJAH!'
SING new line: 'SING'
If the user now types XCH:
*[HALLE]EDIT.
SANG HALLELUJAH! old line: 'ALLELUJAH!' {:)
SINGT% new line is still: 'SING' "
If the user again types XCH:
*[HALLE JEDIT.
SANG HALLELUJAH! old line: 'V’
SINGEIAGIHATLHAL, new line is still: 'SING’

If X°H is typed once more, QED will ring the bell and take no further

action, as there are no more H's in the old line.

Retype Qharacters

Thé following control characters do not afféct the state of the edit, but
merely retypé the cld and new linés, to permit the user to recover in case he
has become confused about the state of the edit. Editing may then continue

normally.

O

@

5-15

R QFD types line-feed and then the rest of the 0ld
line, and on the next line, the new line so far
produced.

Example:

(Assume in this example that ¢ indicates that A® was typed ond % indicates

a skipped character):

*Q1EDTIT.

THE MANDALA (WHICH FIGURES PROM- old line: 'URES PROM-'

StAE9Mt MDtANDALA 844(¢ (99% new line: 'A MANDALA ('

' URES PROM- o0ld and new lines are unchanged.

A MANDATA (

¢ QED types out the state of the edit as in Rc, except
that the rest of the old line 1s properly aligned with
the new.

Example:

 Let us take the setup in the R® example above and assume that ¢ is typed
instead of R®:

*Q1EDIT.
THE MANDALA (WHICH FIGURES PROM-
STAEAIMAMDY ANDALA 844(1 (%4%

URES PROM- 0ld and new lines are unchanged.
A MANDALA (

The Re~Edit Character

Y° QED copies (without typing) the rest of the old line
onto the new and then the result of this concatenation
may be re-edited. That is, QED gives a carriage-return
and line-feed and editing may continue; the old line
is now the result of the goncatenation and the new line
is null. '

Example:

*.EDIT.

ZHT SKG MAX o0ld line: ' SKG MAX'

ZHTOT new line: 'ZHTOT'

5-16

If the user now types Y°: \\:>
*.EDIT.
7HT SKG MAX
7HTOT _ old line: 'ZHTOT SKG MAX'
new line: ' (nu1l)

(Note that the characters copied are not typed out.) Suppose the user
now types C and then D°:

* . EDIT.

ZHT SKG . MAX
7HTOT

CHTOT SKG MAX
* .

CHTOT SKG MAX
*

Mode Characters
c

E QED changes the mode from replace to insert, and
types <; or from insert to replace, and types >.
The mode is replace at the beginning of each line;
in replace mode, characters typed by the user replace
those of the old line one-for-one. In insert mode,
characters typed by the user are appended to the new
line, but the old line is unaffected. (Skips and
copies proceed as described above in either mode.)

Example:

*112EDIT.

RESTORING THE DAMAGED old line: ' THE DAMAGED'

RESTORATI new line: 'RESTORATI'

If the user types EC and continues typing:

*112EDIT.

RESTORING THE DAMAGED 0ld line is still: ' THE DAMAGED'

RESTORATI<CN OF new line is now: 'RESTORATION OF'

And if the user now types H° (q.v.):

*112EDIT. ,

RESTORING THE DAMAGED 0ld line is now: ' (null)

RESTORATI<ON OF THE DAMAGED the new line is: 'RESTORATION OF THE

DAMAGED'

5=-17

K QED types " and changes mode from the usual one
to one in which no characters are appended to the
new line; or from this latter mode back to the usual
one. Mode is set to the usual one at the beginning
of each line.

Example:

(Underlined characters are those which would normally have been appended

to the new line but were not because of the K° mode.)

¥19, 20EDIT.
CHC CIO PILE old line: 'CIO PTLE'
CHC new line: 'CHC !

If the user types K° and then H® (q.v.):

*19, 20EDIT.
CHC CI0 FILE 0ld line: '* (null)
CHC "CI0 FILE new line: 'CHC '

If the user now types carriage return:

%19, 20EDIT.

CHC CI0 FILE

CHC "¢T0 FILE(CR) ,
SKG =77B : old line: ' SKG =77B'

new line: 'CHC !
Note that although the CR caused the edit of the next line to begin, it
was not appended to th¢ new line, so that the new line is "left over" for the
edit of line #20. Also, the K° mode has been reset to the usual one by the

beginning of the line #20 edit. Suppose the user now types k° and then y° (q.v.):

%19, 20EDIT.
CHC CIO FILE
CHC "CI0 FILE(CR)
SKG =778 old line: 'SKG =77B'
" new line: 'CHC !
Now suppose the user types K° and then D° (q.v.):
%19, 20EDTT.
CHC CIO FILE
CHC "cI0 FILE(CR)
SKG =778
" "SKG =77TB

*

5-18

Note that the single line 'CHC SKG =T7B' replaced the old)
lines #19 and 20.
¢ QED changes mode from the usual one to one in which
characters which are (or normally would be) appended
to the new line are also collected in a special (non-
addressable) internal buffer, and types [; or from this
latter mode back to the ugual one, and types]. Buffer
1 is cleared. Whenever L~ is echoed as], the text in
this internal buffer is loaded into buffer 1. This
action 1is also taken when the user terminates a line
in this special mode. The mode is reset to the usual
one at the beginning of each line.
Example:
(Assume that [and] indicate that I° was typed):
*BUFFER #1.
"ABC" N
* s INIT2 1 APPEND.
STORE [Fn,Gl,FLGe,Fms(CRg (note that the mode is reset by CR)
STORE [FIGYH,FLGS5],FLGO(D") :)
*.-1,./
STORE FLGl,FLG2,FLG3 (Lc did not affect the append
STORE FLGY,FLGS,FI1G6 itself)
¥BUFFER #1.
"FLG1, FLG2,FLG3
FLO4, FIGS "
*

\

6-1

6.0 Substitute

The SUBSTITUTE command allows the user to substitute one string
of characters for another in all or some of its occurrences in the
main text buffer. There are options giving the user a variable
amount of control over the individual substitutions and allowing
him to see each substitution before and/or after it is made.

The format of the command is:
In VERBOSE mode:
ISUBSTITUTE (options)/text”/FOR/text’/

In QUICK mode:
gg(options)/textn/texto/

Where the underlined portions of the command are typed by
the user. In place of /, the user may employ any character except
: or blank to delimit the two strings of characters, text” and
text®. To allow the user to make this command more readsble,
blanks are ignored except in the two strings.

Text” and text’ are strings of characters; neither may
contain carriage-returns, and texto should not be the null string.
The control characters Vc, Ac, Qc and W° (described in section 5.4)
may be used while typing in the strings. '

When the character terminating text® is typed, the SUBSTITUTE
begins and proceeds generally as follows: QED begins on the first
line of the specified interval (l) and searches for occurrences
of texto. The search continues through the last line of the
specified intervai (at which point the search, and the SUBSTITUTE,
terminate) or until an occurrence is found. In this case QED may
or may not mske the substitution of textn for text® (according
to the "options" specified). In either case, the search continues
immediately after that occurrence of the texto (or the textn that
replaced it) and proceeds es sbove, until the end of the interval
is encountered. At that point, QED types out an integer which is
the number of substitutions actually made.

6-2

The options possible are:

:G which causes QED to make all substitutions without
typing. (It will terminate after N substitutions
if :N (q.v.) has been typed.)

W Each time an occurrence of the string text® is found,
QED types out the line containing it (with the
occurrence in question enclosed in double quotes)
and expects the user to type:

S which causes QED to make the substitution
and continue, or

option which causes QED to change to that option
and wait for the user to type S, another
option, or some other character.

any which causes QED to continue without meking
other the substitution.
non-blank
character

'L after all the substitutions in a given line are mede,
the line is typed out. (There must be at least one
substitution made in the line for this to happen.)

vV is the combination of :W and :L.

N where N is a string of digits (terminated by the
first non-digit following it) causes QED to make at
most N substitutions. That is, QED will terminate
the SUBSTITUTE normslly when it has made N substitu-
tions. (If this option is omitted, the SUBSTITUTE
will terminate only when the end of the interval I
is reached.)

Options may be concatenated (e.g., SUBSTITUTE :L:19/A/ FOR /B/
which will make at most 19 substitutions and list each one made)
and are interpreted thusly:

:C (C is G, W, L, or V) overrides all previous :C.

:N (N is an integer) overrides all previous :N.

The final C and N are merged.

One may choose to give no options, which causes QED to make
all substitutions in the interval, without typing.

O | - 63

As examples of the SUBSTITUTE command, consider: (underlined
portions typed by the user.) -

*,SUBSTITUTE :V,.HAS GIVEN, FOR.GAVE,
HE "GAVE" SEVERAL RECITALS, OF
S | note use of . instead of /
HE HAS GIVEN SEVERAL RECITALS, OF
1
%:ADDR1:, .+
ADDRL ADD ALPHA
BRX *-1
ADDR2 ADD BETA
ADD GAMMA

+SUBSTITUTE .(UB/ FOR /_ADD/

ADDR1 SUB ALFPHA (note use of blanks to keep

ADDR2 SUB BETA
SUB GAMMA the labels ADDR1 and ADDRZ from

3 S being changed)
*:ADDR3L1:, .+2
ADDR31 ADD DELTA:

‘BRX = %-1 .

ADD EPS

*,-2, SUBSTITUTE :W/SUB (FOR /ADD/
TADD'R3L ADD DELTA

@

G XK

2

Hig=2,./

ADDR31 SUB DELTA " (note the use of :G to change
BRX *-1 options, and K to prevent a
SUB EPS " substitute)

*

C

7.0 String Buffers

Thirty-six string bufferé are avalilable to the user, named by
the digits (0-9) and letters (A-Z). Their contents may be any
string of characters. The contents of bufféfs 0 and 1 are affected
by searches, SUBSTITUTE, and L°, as noted in the description of
these features. In general, String buffers,0-9 are reserved to
Joint use by QED and the user, i.e., both may affect their contents,
and this should be borhe in mind when buffers 0-9 are used{‘ It is
advisable to use the lettered buffers (A-Z) when one wants the
contents of a buffer to be changed only when he explicitly changes
them (with LOAD, GET, KILL or JAM).

7.1 Iloading, Deleting and Printing Buffers

Each of the following five commands is specified by its first
letter; QED then completes the command up through the number sign
(#). The user then types a letter or a digit (C) to specify a
buffer and then gives a confirming dot (.). (In QUICK mode, QED
only types out # to complete the command; the user then proceeds
as above. For example, in QUICK mode the command to print buffer
E will look like: *gﬁg; where the underlined portions are typed
by the user.)

Any string buffer may be loaded with one of the three following
commends. A buffer is always cleared before it is loaded.

ILOAD #C. vhere C is a letter or a digit causes QED to
load string buffer C with the lines specified
by I. . is changed to the last line loaded.

IGET #C. causes QED to load buffer C with the specified

- - lines, which are then deleted from the main text
buffer. . is changed to the line before the
first one loaded.

JAM INTO #C. causes QED to go into text input mode. The user
~ may type in text (V©, A®, Q°, W® are recognized
and have the functions described in section 5.4),
terminated by a D®. QED then loads buffer C
with the collected text.

7-2

The contents of & string buffer may be printed with:

BUFFER #C. which types the contents of buffer C, enclosed
in double quotes. :

To delete the contents of a buffer, type

KILL #C. which clears buffer C. (Note: to delete the
contents of the main text buffer type
1,$DELETE.)

Exemples: (suppose buffer E contains 'ABC')

*BUFFER #E.

"ARCY (The double quotes are supplied by
*JAM INTO #E, the BUFFER command.)

NEW CONTENTS(D™) (Note that no CR is supplied before

*B UFFER #E. the D®; the contents of buffers need not
"NEW CONTENTS" be lines.)

*1/

FIRST LINE

*x1LOAD #E.

*BUFFER #E.
"FIRST LINE

*1,4/

FIRST LINE

SECOND

THIRD

FOURTH! ILINE

*2 ¢3GET #5.

*1,2/7

FIRST LINE (The 014 second and third lines were deleted.)
FOURTHITLINE

*RUFFER #5,

"SECOND

THIRD

*KILL #5.
*BUFFER #5.

" ve

(Buffer 5 contains no text.)
b4

7-3

7.2 The Uses of String Buffers

ch is recognized at all times, and is equivalent
to the user's typing the string of characters
in buffer N (with the exception of command errors,
noted be%ow). The B~ is echoed or a letter, as #,
and if B'C is typed, where C is not a digit QED
types ? and ignores both B® and the character C.

Thus, string buffers can be used to minimize typing in text
input; for example, éuppose buffer W contains ' BSS 1' and the
user does the following INSERT. Assume in this example that #
indicates that B® was typed:

#11INSERT.
A1#W(CR)
A2#W(CR)
BI#W(CR)
B2#W(CR)
*11, 14/

Al BSS
A2 BSS
Bl BSS

B2 BSS
*

ol e

Another use of string buffers is that of moving text. For
example (assume that # indicates that B® was typed):

*:TEMPL:, . +2/
TEMP1 BSS
TEMP2 BSS
TEMP3 BSS
*,-2,.GET #X. (GET deletes the lines after loading the buffer)
*115INSERT.

e

'#X

*115,117/
TEMPL BSS
TEMP2 BSS
TEMP3 BSS
*

e

(Note: buffer W still contains the three lines)

This sequence of commends was used to take the three lines in
question from their old position and insert them before line #115.

7-4
v::)
Also, buffers may be used as a source of commands. (An error |

in a command taken from a buffer causes control to return directly
to the user, i.e., the whole hierarchy of buffers is sborted; the
contents of the buffers are not changed, of course. Rubout has
the same effect.) When commands are taken from buffers only
characters explicitly printed with the commands /, PRINT, line-feed,
*, =, ¢ ", or BUFFER are typed out. As an example of commands
from buffers consider:
*JAM INTO #J.

:ABC:E.XYZ(VC)(D®)&D(D®) &D is typed by QED; note the use of V°
to enter a DC.

*BUFFER #J.

"s+ABC"E.XYZ&D" QED types out D® as &D.
*(BC WJ # is typed by QED.

*

At this point, all lsbels 'ABC' in the main text buffer have been

changed to 'XYZ'. The error of the search :ABC: when there are

no more labels of that form causes control to return to the user. Q:i>
Buffers used in this way may call other buffers; that is,

if B°N is inserted in a buffer (with V®) then when those characters

are accessed by QED in reading from the buffer, they will cause

a transfer to buffer N until this latter is exhausted, at which

time control returns to the characters following the B°N in the

original buffer. Buffer N may call other buffers, in the same

manner. (However, if the contents of the calling buffers are

altered by the operations of the called buffer, peculiar things

may result.) For example, if we have: '

*BUFFER #F.
"J.E-&!{!

&Bv "
*BUFFER #N.
", +1E.&H!

&BN"
*

N

S

75

Then if(B®)F is typed, each line of the main text buffer will
be edited in turn (nothing will be typed out), and at the end,
i.e., when QED finally types *, each line will have ! at the end.
The error of calling for .+l (in buffer N) when . is the last

line returns control to the user.

8-1

8.0 Mode and Tab-Setting Commands

8.1 Quick/Verbose Mode

QUICK. - causes command completion (in commend mode) to
be suppressed except in the cases of READ FROM
and WRITE ON.

VERBOSE. restores command completion disabled by QUICK.
This is the usual mode.

Examples:

*11EDIT. (verbose mode: 'DIT' is typed by QED)

CIA
CLB
*QUICK.
*.E. (quick mode: 'DIT' not typed by QED)
CLB
CLX
‘*READ FROM /T/. ('READ FROM' is unaffected)
901 WORDS.
*V, ('ERBOSE' is not typed by QED)
*¥11EDIT. (mode is verbose again)
C1X
CIAB
*

8.2 Ignore Characters Mode

"

causes characters typed by the user to be ignored
(carriage return is still supplied with line-feed;
I¢ (tab) end B® (buffer call) are still recognized)
until the next D®. Rubout also restores the mode
to the usual one. In addition, if this command

is read from a buffer, characters up to the next

D¢ are typed out. This is useful for printing
messages from buffers, as usually nothing

except explicit print commands causes printing
from buffers.

Exemples:

*"MHTS IS NOT(CR)

RECOGNIZED(CR)

BY QED(D®)

*1T,0AD.

"(CR) c
MESSAGE(VS) (D°)&D(D®) &D is typed by QED; note the use of V

*1BUFFER. to enter a DF without terminating the LOAD.

"

MESSAGE&D" : Only the first and last " are supplied by QED.

*(B® 1
MESSAGE
*

8.3

TABS.

8-2

Tab-Setting

QED gives a carriage return and line-feed and
then expects a string of at most twelve decimal
numbers separated by commas (,) and terminated
by a dot (.); none of the numbers is to exceed
80. Also, the numbers should be in ascending
order of magnitude to avoid peculiar results.
If the input is deemed illegal, QED types ? and
then the user may continue typing. QED sets
the tab stops to the specified positions. The
tab character is I°. (Full description in
‘section 5.4.) The tab stops are initialized
upon entry into QED to 8, 16, 32, LO.

Example:

*TABS.

5,100
*

sets the tab stops to 5 and 10.

9.0 Returning from QED and Panic Messages

9.1 The Normal Return

When the user is in command mode,’the command

FINISHED. may be used to return to the exec. If the last
command previous to the FINISHED command was a
WRITE commend, or if there is no text in the main
text buffer, QED simply returns the user to the
exec. If there is text in the main text buffer
and the last command was not WRITE ON, QED types
WRITE OUT! (to remind the user to save his text
on a file before he leaves QED) and returns to
the exec.

If the user has returned to the exec from QED and called no
other subsystem, nor done anything to cause a RESET, he may
continue QED by typing |
€CONTINUE QED. |
This preserves the state of QED as it was before he returned to
the exec (in particular, the main text buffer is unchanged).
However, typing
@aED : |
will get the user a "fresh" copy of QED, and in particular, one
with nothing in the main text buffer.

For example, after the sequence:

*FINISHED.
WRITE OUT!

@DRUM BLOCKS LEFT = 10 OUT OF 110
@rONTINUE QED.
*

the user may continue using QED just as though this sequence had
not been typed. '

9.2 Rubout

The rubout button may be pressed at any time. If QED is
inputting text, rubout will cause QED to ring the bell., If a
second rubout is typed (with no intervening typing) the command
will be aborted and the text being input will be lost.

9-2

In all other cases, typing & single rubout during the execution
of a command will ecause the cufient operation to be aborted, and
QED will return to command mode. If QED is in the middle of
printing or writing a large number of lines, . will-be set to the
last line printed or written. The value of . may be unpredictebly
affected by aborting commands in this way.

In command mode, two rubouts with no intervening typing will
return the user to the exec. This is not the normal return
(see section 9.1 for the normal method of returning), but the
user‘may continue QED with the executive command
@ONTINUE QED.
as describ¢d in section 9.1.

9.3 Peanic Messages

In certain contexts, QED will type out a message to warn
the user of a condition he might not otherwise be aware of:

NO ROOM. indicates that the operation being executed
caused a memory trap. (Check machine size if
UNUSED MEMORY is >0.)

WON'T FIT. indicates that the attempt to load & string
buffer will overflow the area allocated for
string buffers. The buffer concerned will have
been cleared but not loaded.

#1 FULL. indicates that the operations of L° (q.v.) have
filled the special internal buffer allocated
for them, and no more characters will be collected
.using 1°. Text input may continue normally.

I-0 ERROR. indicates that a READ or WRITE was terminated
on some sbnormal condition, possibly an unexpected
end of record.

NEARLY FULL indicates that text input has caused the internal
‘ text-collection buffer to f£ill nearly to capacity.
The user may continue inputting text as usual,
but if he does not terminate text input before
the internal buffer overflows, he will get the
message:

EDIT TERMINATED indiceting that QED simulated a D° and terminated
text input. QED then returns to command mode.

»

= JE e TR T c I & SR YN o = S
o 0o 6 oo OIEP 0

=

“%

=~
0.

20 %) t-'O

)
[¢]

WO g
le] (e} [e]
el

[4>]
0

L]
[¢]

ew)
0

<3
)
je

S(')

=]
Q
Te)

o

Y]
0
jQ

R
o 1o

~—
[e]

\C

APPENDIX A: INDEX OF CONTROL CHARACTERS

backspace one character (1)

call of buffer N (#)

copy (typing) one character

copy (typing) rest of line and terminate
change insert/replace mode (< , >)

copy (no typing) rest of line and terminate
(vell) no function

copy (typing) rest of line

tab

cannot be typed in

change ignore/usual mode (")

change buffer 1/usual mode ([,])
(carriage return) terminate line (and edit)
backspace one character, restorative (1)
copy (typing) up to C

skip up to C (%%...%)

backspace one line («)

retype, fast

skip one character (%)

retype, aligned

copy (typing) to next tab stop

take C literally

backspace word ()

skip through C (%%...%)

concatenate and re-edit

copy (typing) through C

no function

no function

no function

no function

no function

no function

(See also the table of contents for section 5.4)

Page
5=5

5-5,
5-8

5-10
5-15
5-11

5-16
5-17
5-5
5-7
5-9
5-12

5-1k
5-12
51k
5-8
o=5
5-6
5-13
5«14
5=-10

7-3

@

o

Command

3]

/

t

-
(line-feed)
APPEND
BUFFER
CHANGE
DELETE
EDIT
FINISHED
GET
JNSERT
JAM INTO
KILL

LOAD
MODIFY
PRINT
QUICK
READ FROM
SUBSTITUTE
TABS
VERBOSE
WRITE ON

Note: A description

APPENDIX B:

. °
. . .
. . . .

2-1 and 2-2.

INDEX
.
. .
*
.
.
.] L4
.
L
L] - .
¢« o
. . .
. L] -
L .
L . L]
. . L]
.
. .
. -
. . L]
-
L] . .
.
L] *
. L] -

of searches

OF COMMANDS

. » [
. ¢ .

. L I

. LI I)

. . LI
. . o »
. . LI
» 0 -
. . .
. .

. LI
¢ o * * .
. e .

is in #4 and 5 under

T~1

7-1
7-2
7-1
5-3
3-1
8-1
h-1
6~1
8-2
8.1
b1

section 2.1, pages

